88. Helicenes: Thermally Induced Intramolecular 4+2 Cycloadditions Involving the [6]Helicene Skeleton

by Richard H. Martin*, Jacques Jespers and Nicole Defay

Service de Chimie Organique, Faculté des Sciences, Université Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Bruxelles

(17. II 75)

Summary Treatment of dl-1-formyl[6]helicene (1) with the ylid of (EtO)₂P(O)CH₂CO₂Et in boiling C₆H₆ gave a mixture of two dl epimeric cycloaddition products: trans-2a (80%) and cis-2b (12%) An X-ray diffraction study (Van Meerssche et al. [2]) fully confirmed the structure and the stereochemistry assigned to the most abundant stereoisomer 2a by UV., ¹H-INDOR, NOE and catalytic hydrogenation of the non-benzenoid double bonds.

Soon after the discovery of the acid catalysed rearrangement of *dl*-1-hydroxymethyl[6]helicene [1], we have observed another reaction involving the [6]helicene skeleton, namely: a thermally induced intramolecular 4 |- 2 cycloaddition.

When a solution of dl-1-formyl[6]hclicene (1) (0.356 g) in C_6H_6 (30 ml) is added to a solution of $(EtO)_2P(O)CHCO_2Et$ [prepared from $(EtO)_2P(O)CH_2CO_2Et$ (1.12 g) -| NaH (0.24 g) in C_6H_6 (30 ml)] and the reaction mixture refluxed during 12 h, two dl-isomers (M+ for m/e 426) are formed in 80% (2a) and 12% (2b) yields, respectively. The products are separated by dry-column chromatography (Woelm silicagel, C_6H_6): 2a m.p. 215–216° (CH_3CN); 2b m.p. 195–197° (CH_3CN).

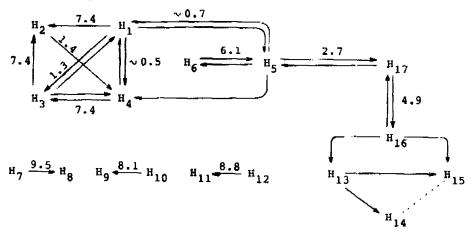
When the same reaction is carried out at room temperature (14 h), only one isomer (2a) is obtained in 90% yield.

The ¹H-NMR, and UV, spectra clearly show that 2a and 2b are not the expected (Z)- and (E)-ethyl β -(1-hexahelicyl) acrylates.

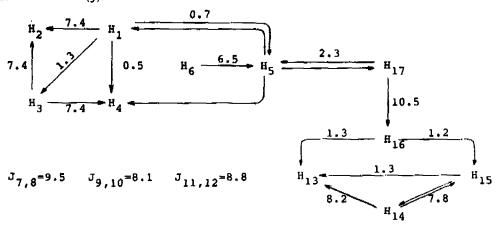
н	2a	2ъ	3a)	Н	2a	2 b	3 a
1	5.83	5.78	5.67	11 or 12	7.57*)	7.61a)	7.65*)
2	6.50	6.56	6.68	12 or 11	7.72ª)	7.67 a)	7.74ª)
3	6.81	6.83	6.97	13	7.57	7.54 %)	7.61
4	7.16	7.10	7.15	14	<u>⊶</u> 27.27	7.20 %)	7.35
5	4.64	4.37	3.58	15	<u>~</u> 7.27	6.92ª)	7.09
6	6.66	6.67	b)	16	4.23	4.27	4.16
7 or (8)	6.42a)	6.39*)	bý	17	3.47	3.52	3.38
8 or (7)	6.51 a)	6.50ª)	b)	CH,	4.23	3.96	4.33
9	7.444)	7.43ª)	7.41.2)	CH _s	1.27	0.91	1.37
10	7.77 a)	7.77 a)	7.78ª)	•			

Table 1. NMR.-spectra in CDCl₃ (ppm from TMS - Bruker HX 90 MHz)

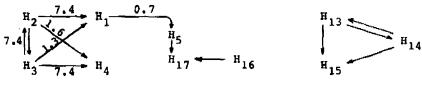
a) Calculated values.


b) 7 H between 0.8 and 3.2 ppm.

Structure of 2a. The structure of 2a was assigned by UV., 'H-INDOR, NOE and catalytic hydrogenation. The INDOR studies are summarised in Fig. 1 and the chemical shifts are collected in Table 1.


The expected modifications of the ¹H-NMR. spectrum are observed following the catalytic hydrogenation of the two non-benzenoid double bonds of 2a [H_z, Pd/C, C₈H₆; yield of the 6,6a,7,8-tetrahydro derivative 3a, 90%; m.p. 199–200°, white needles from CH₈CN; M^+ for m/e 430|.

Calc. for C₃₁H₂₆O₂ (430.5) C 86.5; H 6.1. Found: C 86.6; H 6.2%


INDOR on 2a (J).

INDOR on 2b (1).

INDOR on 3a (J).

 $J_{9,10}=8.1$ $J_{11,12}=8.7$

The UV. spectrum (Fig. 2) of 3a is akin to the spectrum of phenanthrene.

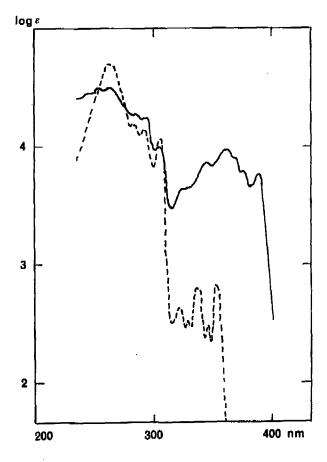


Fig. 2. UV. spectra of 2a (---) and 3a (---)

The configuration at C(17) in 2a was assigned on account of the $J_{16,17}$ and of NOE experiments. The relatively small $J_{16,17}$ (4.9 Hz) is characteristic of a trans configuration [3]. Examination of a space-filling model shows that in the trans stereoisomer, H(15) and H(17) are in close proximity. This was confirmed by the fact that irradiation of H(15) gave an 11% increase of the integrated area of H(17) in 2a, using H(5) as an internal reference.

An X-ray diffraction study carried out by Van Meerssche et al. [2] fully confirmed the structure and the configuration provisionally assigned to 2a.

Structure of 2b. Present UV. and ¹H-NMR, evidences strongly suggest that 2b is the cis epimer of 2a (inverted configuration at the chiral center C(17)). The δ (ppm) in 2b are very similar to the δ (ppm) in 2a (Δ < 5 Hz; Δ = δ (2a) - δ (2b)) but for the ester radical (-CH₂CH₃) and for H(5) and H(15): Δ CH₂ 0.27 ppm, Δ CH₃ 0.36 ppm, Δ (H(5)) 0.27 ppm and Δ (H(15)) 0.35 ppm. Furthermore, the J's are of the same order in 2b and 2a, with the exception of the $J_{16,17}$: 2b 10.5 Hz (cis); 2a 4.9 Hz (trans) [3]. No NOE was observed between H(15) and H(17) in 2b. The ¹H-NMR, results are fully compatible with structure 2b.

On the other hand, the presence of a four spin system containing three aliphatic and one olefinic protons connected to a four spin aromatic system by long-range couplings $(J_{1.5}$ and $J_{4.5})$ seems to exclude alternative structures.

The ease of formation of the thermal cycloaddition products involving a (formal) phenanthrene system is probably due to the following favourable factors: the close proximity of the reacting carbon atoms in the intermediate β -(1-hexahelicyl)acrylic esters, a ΔS^{\pm} term much smaller, in absolute value, than the ΔS^{\pm} term of bimolecular *Diels-Alder* reactions and the departure from planarity of the aromatic system.

We now plan to carry out the cycloaddition reaction and the acid catalysed rearrangement [1], starting from optically active 1-formyl- and 1-hydroxymethyl[6]-helicene, respectively.

Experiments designed to determine the minimum requisite to observe 1,4 cyclo-additions to a helicene skeleton are also under consideration.

We express our gratitude to Professor M. Van Meerssche for the X-ray diffraction study of our product 2a. The financial support of the *Fonds de la Recherche Fondamentale Collective * (contract No. 994) is gratefully acknowledged. One of us (J. Jespers) is indebted to the *Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture * for the award of a fellowship.

REFERENCES

- [1] R.H. Martin, J. Jespers & N. Dejay, Tetrahedron Letters, in the press.
- [2] M. Van Meerssche et al., private communication.
- [3] C. K. Fay, J. B. Grutzner, L. F. Johnson, S. Sternhell & P. W. Westerman, J. org. Chemistry 38, 3125 (1973).